Unraveling mysteries of plant cellulose


UNIVERSITY PARK, Pa. — Jeffrey Catchmark sees the quest to unlock the mysteries of lignocellulose synthesis and assembly as one of the most important research pursuits of the next century.

On a mission

And the associate professor of agricultural and biological engineering in Penn State’s College of Agricultural Sciences is on a mission to find the key.

Co-director of the university’s new Center for Lignocellulose Structure and Formation, Catchmark is determined to help answer the long-standing question of how our civilization can produce food, fuel and fiber more efficiently and sustainably.

The answer

The structure of cellulose — the rigid material that makes woody plants hard and stiff and protects their sugars that scientists covet to produce biofuels — holds the answer, he believes.

“Even after decades of research, cellulose synthesis is not very well understood,” Catchmark said. “We don’t know how the cells assemble this chemical barrier to weather, insects and other organisms. The cell wall is very difficult to degrade.”

Catchmark, center co-director Daniel Cosgrove, professor of biology in the Eberly College of Science, and other colleagues at the center will have substantial resources to aid their study of the molecular biology of cellulose.


The U.S. Department of Energy awarded the center a $21 million, five-year “Energy Frontier” grant to learn more about the physical structure of the biopolymers in plant cell walls and improve methods for converting plant biomass into fuel.

The funding for this center is contained in the economic stimulus bill, the American Recovery and Reinvestment Act of 2009.

“Cellulose is the most abundant biopolymer on Earth,” Catchmark pointed out. “More wood is used than all other materials, except those mined like the ingredients in concrete. If we could more efficiently use this fiber, it would have huge impacts. The question is, how can we better use the cellulose that we get from plants?”

Unraveling the secrets

The Center for Lignocellulose Structure and Formation will be one of few places where research is truly focused on unraveling the secrets of lignocellulose.

“We believe we can answer the basic questions that to date no one has been able to answer,” Catchmark explained. “We need to learn how cellulose is produced and how the biopolymers are assembled. If we know that, we think we can develop processes to disassemble it.”

Disassembling plant walls is crucial, of course, because improving methods for converting plant biomass into fuel depends on breaking down the cellulose.

With vast agricultural and forest-based feedstocks, the U.S. is uniquely and competitively poised to capitalize on technical advancements relating to lignocellulosic materials, noted Nicole Brown, associate professor of wood chemistry, who is part of the center.

More than biofuels

But the center — which also will sponsor collaboration with researchers at North Carolina State University and Virginia Polytechnic Institute and State University — is about more than biofuels, she pointed out.

“Understanding these complex materials — specifically how proteins work to assemble the biopolymers — is key to efficient utilization and technological breakthroughs,” Brown said. “Furthering our understanding of renewable material synthesis and coupling this to nanotechnology is paramount to engineering composites and other value-added materials for the 21st century.”


Up-to-date agriculture news in your inbox!



We are glad you have chosen to leave a comment. Please keep in mind that comments are moderated according to our comment policy.

Receive emails as this discussion progresses.